Package: mlquantify 0.2.0

mlquantify: Algorithms for Class Distribution Estimation

Quantification is a prominent machine learning task that has received an increasing amount of attention in the last years. The objective is to predict the class distribution of a data sample. This package is a collection of machine learning algorithms for class distribution estimation. This package include algorithms from different paradigms of quantification. These methods are described in the paper: A. Maletzke, W. Hassan, D. dos Reis, and G. Batista. The importance of the test set size in quantification assessment. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI20, pages 2640–2646, 2020. <doi:10.24963/ijcai.2020/366>.

Authors:Andre Maletzke [aut, cre], Everton Cherman [ctb], Denis dos Reis [ctb], Gustavo Batista [ths]

mlquantify_0.2.0.tar.gz
mlquantify_0.2.0.zip(r-4.5)mlquantify_0.2.0.zip(r-4.4)mlquantify_0.2.0.zip(r-4.3)
mlquantify_0.2.0.tgz(r-4.4-any)mlquantify_0.2.0.tgz(r-4.3-any)
mlquantify_0.2.0.tar.gz(r-4.5-noble)mlquantify_0.2.0.tar.gz(r-4.4-noble)
mlquantify_0.2.0.tgz(r-4.4-emscripten)mlquantify_0.2.0.tgz(r-4.3-emscripten)
mlquantify.pdf |mlquantify.html
mlquantify/json (API)

# Install 'mlquantify' in R:
install.packages('mlquantify', repos = c('https://andregustavom.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/andregustavom/mlquantify/issues

Datasets:
  • aeAegypti - Males and Females Aedes Aegypti data from Maletzke

On CRAN:

3.48 score 6 stars 1 scripts 170 downloads 18 exports 77 dependencies

Last updated 3 years agofrom:5d7c9ea9ca. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-winNOTENov 23 2024
R-4.5-linuxNOTENov 23 2024
R-4.4-winNOTENov 23 2024
R-4.4-macNOTENov 23 2024
R-4.3-winNOTENov 23 2024
R-4.3-macNOTENov 23 2024

Exports:ACCCCDySEMQgetTPRandFPRbyThresholdHDy_LPKUIPERMAXMKSMSMS2PACCPCCPWKSMMSORDT50X

Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverFNNforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6randomForestRColorBrewerRcpprecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr